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Constitutive equations of ageing polymeric 
materials 
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In a previous paper, a constitutive equation of relaxation behaviour of time-dependent 
chemically unstable materials has been developed by employing the irreversible thermo- 
dynamics of internal variables and Eyring's absolute reaction theory. In that paper, a 
theoretical expression for the effect of chemical crosslink density, v, on the relaxation 
rate has been developed. In this paper the creep behaviour of a network polymer under- 
going a scission process has been developed. The temperature effect using the WLF 
equation on the coupled chemomechanical behaviour has also been incorporated into the 
equation. 

1. Introduction 
In a previous paper [1], a general constitutive 
equation of relaxation behaviour of time- 
dependent chemically unstable materials has been 
developed by employing the irreversible thermo- 
dynamics of internal variables and Eyring's 
absolute reaction rate theory. A set of evolution 
equations has been developed which can account 
for the effect of chemical crosslink density on the 
relaxation rate. The rate equation to describe 
mechanically coupled chain scission processes has 
also been proposed. These equations which 
represent the coupled chemomechanical behaviour 
of the polymer, are complex and highly nonlinear. 
In this paper, we try to solve the equations for 
specific loading conditions such as constant strain 
(stress relaxation), constant strain rate, stress 
relaxation with sudden change of crosslink density, 
etc., to illustrate the ageing behaviour the equation 
will represent. Finally, the creep behaviour of 
time-dependent chemically unstable materials is 
developed. In order to do this, the Gibbs free 
energy is introduced, in which the state of strain 
is expressed in terms of stress and temperature. 

In order to proceed in an orderly fashion, we 
shall review briefly in the next section the ther- 
modynamic equations and the internal constitutive 
equation of ageing materials in the context of 
deformation kinetics as it was proposed and 
developed in [1 ]. 

2. Thermodynamic equations and 
constitutive equation of internal 
variables of ageing materials 

The fundamental thermodynamic equations that, 
in principle, apply irrespective of the constitutive 
properties of a material are [2, 3] 

= ~(C, T, qr) (1) 

"r = 2(p/po) ( ~ / a C )  (2) 

= - a e l a ~  (3) 

(0r (qr) < 0 (r not summed) (4) 

where ~ is the Helmoltz free energy function. The 
last inequality is the Clausius-Duhem inequality, 
where C is the right Cauchy-Green deformation 
tensor, T the temperature, p and Po the current 
and reference densities, respectively,'r is the stress 
defined in the material frame of reference, r/is the 
entropy per unit undeformed volume and the qr 
are the internal variables. The basic idea of using 
internal variables is that, in order to expand the 
dimensions of the state space of deformation 
such that one can define uniquely the Helmholtz 
free energy, qJ, of a system undergoing an irrevers- 
ible process, it is necessary to introduce a sufficient 
number of additional state variables (internal 
variables) which are considered essential for the 
description of the internal structures of the 
material. 
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The above set of equations does not include 
constitutive equations for the internal variables 
which are essential to account for internal 
dissipation. These additional equations referred to 
as "internal constitutive equations" of chemically 
stable materials have been derived by Valanis and 
Lalwani [4] using the concept of the activation 
energy barrier and deformation kinetics. The 
resulted equations are given by 

il,x+K'~sinh'(K'~ a-~q~ ) = 0 (5) 

where ~ and/~2 are non-negative constants given 
by the equations 

2X a 
K~ - t~ exp(--/3e~) ~ aexp(--/3e~) (6) 

,~ 
er>O 

K~ = CcflX ~ (7) 

where e~ is the potential barrier height, t ~ the 
average time taken by a molecule to traverse a 
distance X r across the barrier, t3= 1/T, K the 
Boltzmann constant and e~' activated energy above 
the potential barrier ~ .  Equation 5 is a 
phenomenological constitutive equation derived 
from kinetic considerations at the molecular level. 

For the ageing materials (i.e. chemicially 
unstable), we can, in general, extend the 
constitutive equation by adding the ageing 
parameters, Ai, in the stress-strain equation, i.e. 

x = 2 -p a~(C, 0, q~,Ai) 
o0 ac (8) 

and in the internal constitutive equation 

O~+K~(Ai)sinh[K'~(Ai) a-~q~] = 0 (9) 

The above set of equations is quite general and, in 
principle, applies irrespective of the constitutive 
properties which a material possesses*. To describe 
the rate of ageing, a chemomechanical kinetics 
equation must be introduced. However, the way of 
introducing ageing parameters depends on the 
material at hand. It is reasonable to assume that 
the ageing effect of network polymer is mainly 
manifested by the chemical crosslinking or scission 
of polymer chains, hence the ageing parameter, At, 
will be identified with chemical crosslinking 
density, v. In our previous paper, we considered 
the network polymer undergoing a scission 
process. In order to describe the kinetic process of 
molecular motion, a network "skeleton model" 

was proposed by postulating that a cross-linked 
polymer consists of a three-dimensional skeleton 
of chemically bonded chains which is imbedded in 
a milieu of entangled uncrosslinked free molecules. 
We further postulated that, due to slow slippage of 
entanglements along the main crosslinked chain, 
the entanglements force the skeleton to relax 
slowly and ponderously. We further consider that 
crosslinking has primarily two effects. One is to 
reduce the length of chains between crosslinks and 
the other is to reduce the number of entanglements, 
i.e. decreasing the number density or concentration 
of the molecular liquid or of the free chains, thus 
accelerating the relaxation processes. 

If the process of relaxation is regarded as a 
process of overcoming energy barriers presented 
by collision with free chains, then one can reason 
that the less the concentration of free chains, the 
less the probability of meeting an energy barrier. 

Returning to the question of introducing ageing 
parameters, let the energy to overcome the 
resistance of a single free chain to the relaxation 
process of a crosslinked chain be 0. Thus if m is 
the average number of free chains in the relaxation 
path of a crosslinked chain, then the energy 
required for relaxation is mO. Let v w be the total 
number of network linkages which include the 
chemical crosslinks, v, plus the total number of 
weak intermolecular force interacting sites, PeN, 
which include weak friction points due to 
entanglements and some causal friction contacts. 
We consider the number of VT to be large and to 
stay constant throughout deformation. We 
postulate that a small change of crosslink density 
will not affect the total number of Vw, or we 
may consider that the increase of chemical 
crosslinks will replace the friction points where the 
weak intermolecular interacting occurs. Thus we 
assumed Pr to be essentially constant in the course 
of a small change in crosslinking. Hence we assume 

PeN "Jr-b' ----- PT ----" c o n s t a n t  (10) 

It is also reasonable to assume that a linear 
relationship exists between yen and v. Also if N is 
the number of free chains then, on purely topo- 
logical considerations, it is reasonable to expect a 
linear relationship of the type 

PeN = aN+ b (11) 

where a and b are positive constants. 

*Equa t ions  8 and 9 are shown  for  the first t ime and are no t  included in [1]. 
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Thus, from Equations 10 and 11 : 

N - PT - -  b v (12) 
a 6/ 

Since m is proportional to N then the energy, 
e, required for relaxation per chain is 

where a'  is a proportionality constant. 
The above expression may be written in the 

form 

e = e o - - T v  (14) 

where e0 is a reference energy and 7 is a positive 
constant. 

In relation to the theory of deformation 
kinetics and as a result of  Equation 14, the rate 
constant, Kl ,  is given by Equation 15. 

2X exp r 1 K,  - -  [-- (eo - 7v/KT)] Z exp (-- fl~). 
7 

(15) 

The above equation may be written in the 
form: 

K1 = K ~ exp (Tv/KT) (16) 

where K~I is a reference value of K1, in which the 
material is chemically stable. 

By substituting Equation 16 into Equation 5, 
we obtain the internal constitutive equation of  
polymer network 

_- o  17) //~ + exp (TvlKT) ~q~ 

where 

1 
KxK2 ~ u = --rfla exp (wlttT) (18) 

and now the ageing parameter, Ai = v, is properly 
introduced into the evolution equation to describe 
the chemomechanical behaviour. Finally, we 
assume that if the scission process is purely 
chemical and is unaffected by the presence of  a 
stress field, then the rate of  change of v is governed 
by the classical rate equation: 

dv v 
- -+--krexp(--eo/kT)  = 0 (19) 
dt g 

where eo is the bond energy of  a bond in the set of 
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bonds v, and g is Planck's constant. The bond 
energy is, essentially, the potential energy barrier 
to the dissociation process. 

It is, however, quite natural to presume that the 
presence of the stress field will have an effect on 
the scission process, through a change in the 
potential energy barrier, Co. 

In keeping with our previous arguments on 
deformation kinetics, we presume that the change, 
Aeo, in e0 is due to the presence of a free energy 
g r a d i e n t ,  ~)~/i)qr, and is in fact a function thereof. 
For the purposes of  obtaining explicit results we 
assume that the dependence is linear and that 

= /a~ (20) 

where /~r are the non-negative material constants. 
The mechanically coupled scission process is now 
given by the relation 

- -+- - kTexp  -- ~ - ~ / a ~  IkT = 0 
dt g 

(21) 

By assuming an explicit expression for the free 
energy function, Equations 22 to 24, which 
represent the coupled chemomechanical behaviour 
of the network polymer, were obtained [1 ]: 

where 

r = ~ E r p r +  kven (22) 

exp ( v/kr) = (23) 

/~ + b exp /~r[prl v = 0 (24) 

Pr = e n  -- qr (25) 

and b = kT/g exp [-- (eo/kT)]. en is the strain 
under simple tension. 

An explicit solution of  the above set o f  
equations under specific loading conditions will 
be sought in the next section. 

3. Mathematical description of relaxation 
process of certain loading and environ- 
mental conditions for ageing materials 

In order to describe the relaxation behaviour 
above the glassy temperature,  the WLF equation is 
applied bymodi fy ing  Equation 23 as follows: 

/?r + kr exp (hv)arp~ = e n  (26) 



where 

{ C ' ( T - - T s )  } (27) 
aT = exp 2 . 3 0 2 6 C 2 + ( T _ T  s 

and h is now a certain function of the variable 
(7/k). The coefficients kr and h are now indepen- 
dent of temperature. Here we attempt to describe 
the ageing behaviour coupled with temperature 
and strain histories, using the above equations: 

3.1. Relaxation only (no chain scission) 
If we assume there is no chemical scission occurring 
during relaxation, then only Equations 22 and 26 
are needed. Thus the equations become: 

r 

r = ~, ErPr + kven (28) 
" f = l  

Dr + kraT exp (kv) Pr = 0 (29) 

where en  is a constant uniaxial strain applied 
during unit step loading, and v is constant. At 
constant temperature, T = To, we have 

Pr = pO exp [-- kraTo exp (hv)t] (30) 

At the initial condition, q(0 § = 0, thus we have 
pO = en. Substituting this relation and Equation 
29 into Equation 28, we have 

r = eu ~ Er exp [-- krta T exp (hv)] + kven. 

(31) 

Since the time-dependent relaxation modulus is 
defined by 

r -  kve n 
- ( 3 2 )  

e l l  

we have: 

AE = ~ E r exp [-- kra:r exp(hv)t] 

= SE[aT exp (hv)t] (33) 

The above equation states that the shift factor due 
to crosslink density is an exponential rather than a 
power function of v. This relation has been 
discussed in [1], however, here we have modified 
Equation 23 into Equation 26 to include the 
temperature dependence through the time- 
temperature shift factor aT. 

3.2. Chain scission only (no physical 
relaxation) 

Under a unit step loading and no physical 
relaxation, we have en = 0 and qr = 0 at time 
t > 0. Thus from Equations 25 and 26, we have 

Pr = 0 and qr = en.  Hence Equations 22 and 24 
become 

r = kven (34) 
and 

/, + u - -  exp = 0 (35) 
g 

For constant temperature, To, we have from 
Equation 35, 

v = v o e x p [ - - ~ - - ~ - } e x p -  t (36) 

Thus we have: 

r(t) 

which agrees with Tobolsky's data [5] on scission 
process at elevated temperature, where no physical 
relaxation occurs. 

Alternatively, one may also observe from 
Tobolsky's data (Fig. 1) that the strain effect on 
the scission process is small for some types of 
polymeric materials. Thus, it is reasonable to 
assume tha t / #  ~ 0 in Equation 24 for our current 
analysis. Hence Equation 24 again becomes 

/~ + v - -  exp = 0 (38) 
g 

3.3. Simultaneous physical relaxation and 
chemical ageing 

Here we would like to consider the phenomenon 
such that both physical relaxation and chemical 
ageing occur simultaneously. First, we consider 
that this phenomenon occurs at constant tempera- 
ture, which simplifies the analysis considerably. 

3.3. 1. Constant  temperature 
At constant temperature, the solution of Equation 
38 is 

v = Vo exp (-- bo t) (39) 
where 

bo = "To exp (-- eo/gTo) (40) 
g 

which is the scission rate constant at temperature, 
To. If the rate constant b0 is small, e.g. of the 
order of 8.0 x 10 -4 rain -1 as observed by 
Tobolsky for natural rubber, expansion of 
Equation 39 into a power series leads to 

v ~ v  o ( 1 - b o o  (41) 

It is obvious that time, t, will not be too large to 
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Figure 1 Effect  of  elongation on chemical stress relaxation of  natural rubber at 100 ~ C (after Tobolsky et al. [5 ]). 

affect the expansion. Now, substituting Equation 
40 into the evolution Equation 26 we have 

ibr + Ir exp (-- hv0bo t) Pr = bll (42) 
where 

lr - kraTo exp (hvo) (43) 

The solution of Equation 42 is given by 

Pr = exp exp (-- et en 

l,. exp (-- cr) ] dr x exp c 

+Clexp[l-rc exp(--ct)l (44) 

where c - hvobo and Cl is the integration constant. 
Next we consider three subsets of loading 

history: 

3.3.1.1. Stress relaxation. Under stress relaxation 
conditions, we have from Equation 44 the solution 

pr = en exp[~exp( - - c t ) ]  (45) 

Substituting Equations 45 and 41 into Equation 
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22, we have 

z [ ~'Erexp [lr/c)e-ct] +kv~ ) = -- bt) eu 

(46i 

Using Equation 32, the time dependent relaxation 
modulus becomes 

AE = ~ Er exp [l-rc eXp (-  ct)] - Kvo bt 

(47) 

In the limiting case, where c ~ 0 (bo ~ 0) such 
that the scission process is near zero, then we have 

exp (-- ct) 
lira - t (48) 

c "-+0 C 

hence Equation 47 becomes 

AE(t) = ~ E2 exp (-- lrt ) = 

= &E[a T exp (hvo)t] (49) 

which is the physical relaxation modulus obtained 
before. It is clear by comparing Equations 47 and 
49 that the rate of relaxation is modified by the 
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Figure 2 Sudden change of crosslink density. 

function 1/c e -et, and kobt which affects the 
modulus directly by changing crosslink density. 

3.3.1.2. Constant strain rate. In a constant strain 
rate experiment, we have 

P r = e , 1  exp [ ~  exp (-- ct)] 

o exp -- exp( - -c t )  dt (50) 

and 

r = k u Z U 2 e x p [ ~ e x p ( - c t ) ]  

x ~ o t e x p [ - ~ e x p ( - c t ) ]  dt 

+ kuo exp ( -  hot) en(t) (51) 

If there is no scission process, then Equation 51 
reduces to 

Er [1 -- exp (-- lrt)] 4- kvoen (t) r = ell lr 

(52) 

which is again the representation of classical finear 
viscoelastic behaviour. 

3. 3.1.3. Stress relaxation with sudden change of  v. 
During the relaxation process, if the crosslink 
density suddenly changes as shown in the Fig. 2, 
then the relaxation will change accordingly. By 
solving Equation 26 directly, one can predict the 
relaxation behaviour without recourse to 
assumptions used by Moacanin et al. [6] and Curro 
and Salazar [7], which are discussed by Huang 
and Aklonis [8]. 

For the time interval 0 < t < to, the stress is 
given by (for constant crosslink density, v0) 

r = AE(aT exp (hpo)t)en + kvoen (53) 

For time to < t, the crosslink suddenly decreases 
to Ul at t = to, then the stress is given by 

7" - =  ~ E r exp [--(Ir +/;)to] exp (-- I;t) eu 
~=t (54) 

+ kvten 
where 

and 

t 
I r = aToEr exp (hut) 

l r = aToE~ exp (hvo) 

and the relaxation modulus is given by 

(55) 

(56) 

AE(t > to) = ~ Er exp [--(l~ + / ; ) to ]  exp (-- frt) 

(57) 

3.3.2. With temperature history during 
ageing 

If the temperature history is included, then the set 
of Equations 26 and 38 becomes very complex. 
There is no simple analytical solution, although 
9ne may solve numerically the set of coupled 
systems of differential equations. However, the 
representation of Equations 22, 24 and 26 offers 
wider flexibility than other approaches [6, 7], 
since it takes into account explicitly the coupled 
effects of temperature and strain history, and 
chain scission of the network on relaxation 
behaviour. 

On comparison with Equation 49, one may 
observe that the relaxation modulus is modified 
by the terms exp [ - - ( l  r 4 - l r ) to ]  , and it seems 
that Equation 57 cannot be simply related to 
Equation 49. 

4. Gibbs free energy fo rmula t ion  - stress 
fo rmula t ion  

In the previous formulation to describe the relax- 
ation behaviour, the Helmholtz free energy was 
employed, where the independent variables are the 
right Cauchy-Green strain tensor, Cii, the 
absolute temperature T and r internal variables qr- 
In order to describe the creep behaviour, the Gibbs 
free energy, q~, is now introduced which leads to 
constitutive equations expressed as functions of 
stress and temperature. In the Gibbs free energy 
formulation, the Piola stress tensor, zq, the 
absolute temperature T and qr become the 
independent variables. 

First, we introduce the Gibbs free energy, q~, by 
the relation 

o ;  = r - �89 (58) 

As a result of Equation 58, one has 
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Off dCij + ? f  dq .  + af  dT 
d~b = ~ oqa aT V 

i 

-- ~'rijdCij -- �89 Cijd'qj 

Re call that 

a f  and r,~ =�89 ~ ~ -  

Thus, one has 

Since 

a~ 

aT 

a~ dqa a~ d T - -  �89 dO = aq2 + -a--T 

a~ a~ a~ 
- -  ~-~ dT + dq~ d~5 = arij dri] + aqa 

by comparing Equation 61 and 62, we have 

and 

a~  

ar~j 

a~ af 
aqa aqa 

a~ af 

aT aT 

(59) 

(60) 

(61) 

(62) 

k l i  : 

IT/ 

r7 
q,. 

Figure 3 Three-element mode1 with a Maxwell element. 

expression of  Helmholtz free energy function as 

(63) f i  1 2 = ~kuei + ~k2i(el - -  qi)  2 (68) 
and* 

Of, 
(64) r - ae i - kuei + k2i(e  i -  qi)  (69) 

(65) 

It is interesting to note that Equation 64 shows 
that the internal force is derivable from the poten- 
tial energy surface expressed either by the 
Helmholtz free energy or the Gibbs free energy. 

In the case of  uniaxial loading with small strain, 
en,  Equation 63 becomes 

a ~  
eu - (66) 

ar  

Let us now expand the free energy with respect 
to stress r and q~, and assume that they are so 
small that terms higher than second-order in these 
terms can be neglected, i.e. 

F~2 
= -- ~Jor 2 -- ~ Darq~ + • -~-qa (67) 

where the coefficient of  the linear term must be 
zero, and Jo, Da and Fa are constants. 

However, it is of  interest to consider a 
mechanical model to compare Equation 67, e.g. a 
three-element model with a Maxwell element [2, 
9] (Fig. 3). From Fig. 3, one obtains the 

Since 

~i  = f i - -  rei (70) 

then, using Equations 68 and 69, one obtains q~i 
expressed in terms of  qi and r, i.e. 

T 2 k2i 
rb i - 

2(kli + k2i) kli + k2i rqi 

klik2i 2 
+ 2(k~ u k2,)q~ (7 l) 

If we consider the three-element model in a series 
configuration, then we have 

n ,i.2 @ kl  i 

r = Z ~bi = Ei:, 2(kli + k2i) ,=,'-" ku  + k2----~ rq' 

+ ~ kuk2i 2 
2 ( ~ T ~ 2 i ) q i  (72) i=l 

By comparing Equation 72 with Equation 67, we 
obtain 

1 k" 
J0 (73) 

Z., kli + k2i 

k2i (74) 
Di = ~ kl~ + k2i 

~'Here r can be calculated directly also from the model: Since r~i = k~ie i and r2i = k2i (e i --qi) and since r = r~i + %i 
then r =kde  i + k2i (e i --qi), as in Equation 69. 
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Figure 4 Theoretical prediction of the shift function A v = exp (hv). 

and 
klik2i (75) 

Fi = 2 kli + k2i 

To our knowledge, Equations 71 and 72 show for 
the first time the relations between mechanical 
models and internal variables in the creep 
expressions, using the three-element model with a 
Maxwell element. $ It is also noted that the 
constants Jo, Di and Fi are non-negative. 

Substituting Equation 67 into Equation 66, one 
obtains 

en = Jo'r + ~ Daqo~ (76) 

From Equations 64 and 17, we have 

//~ + k~ exp (hu)a T - 0 (77) 
aq~ 

thus, with Equation 67, we have the evolution 
equation: 

//~ + ks  exp (hu) aT (-- D~'r + F~q~) = 0 

(78) 

Now the mechanically coupled scission equation 
can be written as 

--dt + g - K T e x p  - e ~ - - Z  P~ a q ~ [ ] /  1 

(79) 

Equations 76, 78 and 79 represent the chemo- 
mechanical behaviour of ageing materials under- 
going creep. 

It is of interest to illustrate the effect of  v on 
creep behaviour for a non-ageing network 
polymer. Under constant stress and constant 
temperature To, i.e. z = ~'0 and T =  To we have 
from Equation 78 

q~ = rn~ [1 -- exp (-- n~tehVaT)]'ro (80) 

where rna - D~/Fa, n~ ==- K~F~. Substituting 
Equation 80 into Equation 76, one has 

en = Jozo + ~ lr [1 -- exp (-- nJehVaT)]'Co 

(81) 
Thus 

A J -  
e 11 - -  J o T o  

T o  
- ~ lr [1 -- exp (-- nateh~aT)] 

= zxJ [ t a t  exp (hu)] 
(82) 

Therefore, the shift factor of  time for creep 
compliance is given by e by, and this form is 
compared with Plazek's creep data [11 ] in Fig. 4. 
Agreement of  the shift factor with the exponential 
form is excellent. Thus it is reasonable to believe 
that Equations 76, 77 and 79 can represent the 
coupled chemomechanical behaviour of  the 

:~Schapery [10] used a Voigt element in series for his mechanical model. In this model, we found that the coefficients in 
Equation 67 cannot be related explicitly. 
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polymer undergoing simple creep, in which the 
effect of scission of chain on the rate of creep is 
expressed explicitly. 
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